Contacto
closeContacto
RMADetalles de envíoPruebas de productos Términos y condiciones

Contacto:

alternate_emailtienda@cdr.pl

call+48 32 750 5003

lun - vier 9:00 - 17:00

Contacto

Cuenta
closeIniciar sesión
Iniciar sesión

Nuevo cliente?

Crear cuenta
Carrito
closeCarrito
La cesta está vacía favoriteWishlist
Huawei eKitEngine AP761 Outdoor Access Point Wi-Fi 6 AXZ1800 1x GE 1x SFP PoE IN
Marca: Huawei
Código de producto: HUA-AP761
Número de catálogo: 9813
Garantía (meses):
Precio
180,91
222,52IVA incluido
No disponible
favoriteAñadir a la lista de deseos
Descripción

The Huawei AP761 is an eKitEngine series access point supporting the Wi-Fi 6 standard. It operates with IEEE 802.11 b/g/n/ax protocols in the 2.4 GHz band and IEEE 802.11 a/n/ac/ax protocols in the 5 GHz band. Its maximum theoretical throughput is 574 Mb/s in the 2.4 GHz band and 1201 Mb/s in the 5 GHz band. The device supports MU-MIMO (simultaneous transmission and reception of data from multiple users), BSS coloring (transmission identification to reduce interference), and TWT (Target Wake Time - a feature that limits energy consumption). The access point has an outdoor-ready enclosure with an IP68 protection rating, suitable for wall or pole mounting. It features integrated directional antennas with a main beam width of 65° horizontally and 40° (2.4 GHz) / 20° (5 GHz) vertically, with a gain of 10 dBi in 2.4 GHz and 11 dBi in 5 GHz. These antennas provide excellent transmission coverage, capable of covering large wireless network areas. The device includes 1 gigabit Ethernet port (10/100/1000 Mb/s) and 1 SFP slot. Power can only be supplied using PoE in the 802.3af/at standard; the manufacturer suggests using the 802.3at standard (some features are limited with 802.3af).

The offered product can operate in several modes: Fat AP, Fit AP, or Cloud. In Fat AP mode, the device functions independently, allowing you to configure it as a regular wireless router. Cloud mode enables connecting the device to a controller located in the cloud, while Fit AP mode is used to connect to another physical WLAN AC controller. Solutions from the eKitEngine series enable you to create an extensive and efficient wireless network that can cover very large areas. The devices support data roaming, bandwidth control, and various authentication methods. The AP761 is suitable for many networks requiring outdoor coverage, such as restaurants, pools, or parks.

Wi-Fi 6 AX1800 wireless network, Bluetooth

The AP761 is designed to transmit Wi-Fi 6 wireless networks, supporting IEEE 802.11 b/g/n/ax protocols in the 2.4 GHz band and IEEE 802.11 a/n/ac/ax protocols in the 5 GHz band. Its maximum theoretical throughput is 574 Mb/s in the 2.4 GHz band and 1201 Mb/s in the 5 GHz band. This speed is more than sufficient for most internet activities, including streaming 4K videos online, gaming, or downloading large files.

The access point also utilizes several additional features that positively impact network quality. MU-MIMO allows simultaneous transmission and reception of data from multiple clients, eliminating data queuing. Beamforming shapes the beam to improve connection with devices at the edge of the coverage area, while TWT (Target Wake Time) conserves energy by waking connected devices only when a transmission is initiated.

Additionally, the device supports Bluetooth transmission (BLE 5.2), which you can utilize for remote management, localization, or IoT applications, among others.

Gigabit Ethernet port, SFP slot, Power over Ethernet

The offered product is equipped with 1 gigabit Ethernet port (10/100/1000 Mb/s) and 1 SFP slot. The Ethernet port serves as the input for IEEE 802.3 af/at PoE power - this is the only method of power supply. The manufacturer suggests using 802.3at; with 802.3af, some functions may be limited. The maximum power consumption is 17.7 W.

The SFP slot allows for transmission using a fiber optic cable. This is particularly important if you're using the AP761 in a location distant from the rest of the network segments or in a network where devices are dispersed.

Directional antennas

The access point features directional antennas. In the 2.4 GHz band, the gain is 10 dBi, with a main beam width of 65° horizontally and 40° vertically. In the 5 GHz band, the gain is 11 dBi, with a main beam width of 65° horizontally and 20° vertically. Thanks to the use of these antennas, the AP761 stands out from the competition with excellent coverage. It is capable of covering a much larger area with Wi-Fi signal compared to devices using omnidirectional antennas. This is particularly important in open spaces, for which it is designed.

Waterproof enclosure

The device is fully designed for outdoor use. Its enclosure protects the interior from moisture and dust ingress, with an IP68 protection rating. The access point is adapted for wall or pole mounting. An additional advantage is the 6 kA surge protection, essential for using the device outdoors.

Up to 1024 clients

The Huawei AP761 can support a maximum of 1024 clients (512 per radio) connected simultaneously. It performs excellently in locations where there may potentially be many users. The system supports load balancing and smart roaming, ensuring that if one access point becomes overloaded, users are switched to others.

The DFA (Dynamic Frequency Allocation) algorithm is used for automatically detecting wireless channel usage and identifying overlapping transmissions. In the case of multiple access points, they operate in a way to avoid interfering with each other. Additionally, technologies such as EDCA (Enhanced Distributed Channel Access) and airtime scheduling allow for planning the schedule of channel utilization by specific client devices, ensuring equal access to the network for each of them.

A significant advantage of the system based on eKitEngine APs is the optimization of network utilization by client devices. Clients with low signal strength or low connection speed are automatically disconnected to improve overall transmission quality. Additionally, the AP761 features a 5G-prior function - client devices are primarily connected in the 5 GHz band to provide them with the best possible throughput. This significantly reduces the load and interference in the 2.4 GHz band.

Advanced wireless system

The offered product is designed to work in a large wireless system composed of multiple access points. Such a network is capable of covering even very large areas, depending on the number of devices used. The system supports data roaming, where users are automatically switched between individual access points without losing their connection.

Huawei solutions offer a wide range of features related to bandwidth control, improving transmission quality, and security. For user authentication, you can utilize methods such as 802.1x, MAC addresses, or captive portals. An advanced management and monitoring system will help you reduce the time spent on network administration, for example, through automatic detection and recognition of various types of errors.

Four operating modes

Access points can operate in four modes:

  • Fat AP - the access point operates independently, and configuring and managing it resembles the process for standard wireless routers. It's suitable for small networks where you use only one AP.
  • Leader AP - It allows configuring the device as a "leader," thereby taking on the role of a controller in the network. You can connect other access points to the device in Leader AP mode to create an expanded system. This mode is best suited for small networks, such as offices or restaurants, and helps reduce costs associated with purchasing additional controllers.
  • Cloud AP -  in this mode, the access point can be managed from a cloud-based platform. This platform significantly simplifies monitoring and conducting initial configurations, eliminating the need for additional management devices.
  • Fit AP - this is the basic mode of operation in which the access point connects to a controller.

Multiple uses

The Huawei AP761 finds its application in many networks where there is a need to distribute the signal outdoors. These include hotels, restaurants, pools, or parks. Thanks to its directional antennas, it provides excellent coverage, capable of reaching a large area. Its durable, waterproof enclosure also makes the AP761 suitable for indoor use, especially in demanding locations. You can successfully deploy it in various types of production halls or warehouses where the access point is exposed to dust.

Specifications

Huawei AP761
Technical specifications
Dimensions (H x W x D) 69 x 200 x 200 mm
Weight 1,91 kg
Ports

1 x 10M/100M/GE electrical port
1 x SFP optical port

(The GE electrical port supports PoE-In)

Bluetooth BLE 5.2
LED indicator Indicate the power-on, startup, running, alarm, and fault states
of the system
Power supply specifications
Power input

PoE power supply: in compliance with IEEE 802.3at/af

(When working in 802.3af power supply mode, the AP is restricted in
functions)

Maximum power consumption 17,7 W
Environmental specifications
Operating temperature –40°C to +65°C
Storage temperature –40°C to +85°C
Operating humidity 0%-100%
IP rating IP68
Radio specifications
Antenna type

Built-in directional antennas

The horizontal and vertical beamwidths of 2.4 GHz antennas are 65° and
40°, respectively.
The horizontal and vertical beamwidths of 5 GHz antennas are 65° and
20°, respectively.

Antenna gain

2,4 GHz: 10 dBi

5 GHz: 11 dBi

BLE: 5 dBi

Maximum quantity of SSIDs
on each radio
≤ 16
Maximum number of STAs ≤ 1024 (512/radio)
Maximum transmit power

2,4 GHz: 28 dBm

5 GHz: 27 dBm

Power adjustment increment 1 dBm
Maximum number of nonoverlapping channels

2.4 GHz (2.412 GHz - 2.472 GHz)

802.11 b/g

  • 20 MHz: 3

802.11 n

  • 20 MHz: 3
  • 40 MHz: 1

802.11 ax

  • 20 MHz: 3
  • 40 MHz: 1

 

5 GHz (5.18 GHz - 5.825 GHz)

802.11 a

  • 20 MHz: 13

802.11 n

  • 20 MHz: 13
  • 40 MHz: 6

802.11 ac

  • 20 MHz: 13
  • 40 MHz: 6
  • 80 MHz: 3
  • 160 MHz: 1

802.11 ax

  • 20 MHz: 13
  • 40 MHz: 6
  • 80 MHz: 3
  • 160 MHz: 1
Fat/Fit AP mode
WLAN features Compliance with IEEE 802.11ax and compatibility with IEEE 802.11a/b/g/n/ac/ac Wave 2
Maximum ratio combining (MRC)
Space time block code (STBC)
Cyclic delay diversity (CDD)/Cyclic shift diversity (CSD)
Beamforming
Multi-user multiple-input multiple-output (MU-MIMO)
Orthogonal frequency division multiple access (OFDMA)
Compliance with 1024-QAM and compatibility with 256-QAM/64-QAM/16-QAM/8-QAM/QPSK/BPSK
Target wake time (TWT)
Low-density parity-check (LDPC)
Frame aggregation, including A-MPDU (Tx/Rx) and A-MSDU (Tx/Rx)
802.11 dynamic frequency selection (DFS)
Short GI in 20 MHz, 40 MHz, and 80 MHz modes
Priority mapping and scheduling that are compliant with Wi-Fi multimedia (WMM) to implement priority-based data processing and forwarding; automatic and manual rate adjustment (the rate is adjusted automatically by default)
WLAN channel management and channel rate adjustment
Automatic channel scanning and interference avoidance
Separate service set identifier (SSID) hiding configuration for each AP, supporting Chinese SSIDs
Signal sustain technology (SST)
Unscheduled automatic power save delivery (U-APSD)
Control and provisioning of wireless access points (CAPWAP) in Fit AP mode
Extended service set (ESS) in Fit AP mode
Advanced cellular coexistence (ACC), minimizing the impact of interference from cellular networks
Multi-user CAC
802.11k and 802.11v smart roaming
802.11r fast roaming (≤ 50 ms)
Network features Compliance with IEEE 802.3ab
Auto-negotiation of the rate and duplex mode and automatic switchover between the Media Dependent Interface (MDI) and Media Dependent Interface Crossover (MDI-X)
Compliance with IEEE 802.1Q
VLAN assignment by SSID
VLAN trunk on uplink Ethernet ports
Management channel of the AP's uplink port in tagged or untagged mode
DHCP client, obtaining IP addresses through DHCP
Application identification and QoS classification on the AP in local forwarding (direct forwarding) mode for better voice quality (identifiable common applications in the industry: Skype, QQ, and WeChat)
STA isolation in the same VLAN
IPv4/IPv6 access control list (ACL)
Link layer discovery protocol (LLDP)
Uninterrupted service forwarding upon CAPWAP tunnel disconnection in Fit AP mode
Unified authentication on the WAC in Fit AP mode
WAC dual-link backup in Fit AP mode
Network address translation (NAT) in Fat AP mode
IPv6 in Fit AP mode
Telemetry in Fit AP mode, quickly collecting AP status and application experience parameters
Soft generic routing encapsulation (GRE)
IPv6 source address validation improvements (SAVI)
Multicast Domain Name Service (mDNS) gateway protocol
QoS features Priority mapping and scheduling that are compliant with Wi-Fi multimedia (WMM) to implement priority-based data processing and forwarding
WMM parameter management for each radio
WMM power saving
Priority mapping for uplink packets; flow-based mapping for downlink packets
Queue mapping and scheduling
User-based bandwidth limiting
Adaptive bandwidth management (automatic bandwidth adjustment based on the user quantity and radio environment) for user experience improvement
Airtime scheduling
Air interface HQoS scheduling
Intelligent multimedia scheduling algorithm
Security features Open system authentication
WEP authentication/encryption using a 64-bit, 128-bit, 152-bit, or 192-bit encryption key
WPA2-PSK authentication and encryption (WPA2-Personal)
WPA2-802.1X authentication and encryption (WPA2-Enterprise)
WPA3-SAE authentication and encryption (WPA3-Personal)
WPA3-802.1X authentication and encryption (WPA3-Personal)
WPA-WPA2 hybrid authentication
WPA2-WPA3 hybrid authentication
WPA2-PPSK authentication and encryption in Fit AP mode
WAPI authentication and encryption
WIDS/WIPS, including rogue device detection and containment, attack detection and dynamic blacklist, and STA/AP blacklist and whitelist
802.1X authentication, MAC address authentication, Portal authentication, etc.
DHCP snooping
Dynamic ARP inspection (DAI)
IP Source Guard (IPSG)
802.11w Protected Management Frames (PMF)
IPsec/DTLS encryption
Maintenance features Unified management and maintenance on the WAC in Fit AP mode
Automatic login, automatic configuration loading, and plug-and-play (PnP) in Fit AP mode
Automatic batch upgrade in Fit AP mode
Telnet
STelnet using SSHv2
SFTP using SSHv2
Remote wireless O&M through Bluetooth console ports
Web system-based AP management and login through HTTP or HTTPS in Fat AP mode
Real-time configuration monitoring and fast fault locating using the NMS
SNMPv1/v2/v3 in Fat AP mode
System status alarm
Network Time Protocol (NTP) in Fat AP mode
BYOD

Device type identification according to the organizationally unique identifier (OUI) in the MAC address
Device type identification based on the user agent (UA) information in an HTTP packet
Device type identification based on DHCP options
The RADIUS server delivers packet forwarding, security, and QoS policies according to the device type carried in the RADIUS authentication and accounting packets.

(The AP supports BYOD only in Fit AP mode)

Spectrum analysis

Identification of multiple interference sources including Bluetooth devices, microwave ovens, cordless phones, ZigBee devices, game controllers, 2.4 GHz/5 GHz wireless video and audio devices, and baby monitors
Working with a location server to locate interference sources and perform spectrum analysis on them

(The AP supports spectrum analysis only in Fit AP mode)

Cloud mode
WLAN features Compliance with IEEE 802.11a/b/g/n/ac/ac Wave 2/ax
Maximum ratio combining (MRC)
Space time block code (STBC)
Cyclic delay diversity (CDD)/Cyclic shift diversity (CSD)
Beamforming
Multi-user multiple-input multiple-output (MU-MIMO)
Orthogonal frequency division multiple access (OFDMA)
Compliance with 1024-QAM and compatibility with 256-QAM/64-QAM/16-QAM/8-QAM/QPSK/BPSK
Target wake time (TWT)
Low-density parity-check (LDPC)
Frame aggregation, including A-MPDU (Tx/Rx) and A-MSDU (Tx/Rx)
802.11 dynamic frequency selection (DFS)
Short GI in 20 MHz, 40 MHz, and 80 MHz modes
Priority mapping and scheduling that are compliant with Wi-Fi multimedia (WMM) to implement priority-based data processing and forwarding
WLAN channel management and channel rate adjustment
Automatic channel scanning and interference avoidance
Separate service set identifier (SSID) hiding configuration for each AP
Signal sustain technology (SST)
Unscheduled automatic power save delivery (U-APSD)
Network features Compliance with IEEE 802.3ab
Auto-negotiation of the rate and duplex mode and automatic switchover between the Media Dependent Interface (MDI) and Media Dependent Interface Crossover (MDI-X)
Compliance with IEEE 802.1Q
VLAN assignment by SSID
DHCP client, obtaining IP addresses through DHCP
STA isolation in the same VLAN
Access control list (ACL)
Unified authentication on the cloud management platform
NAT
Telemetry in Fit AP mode, quickly collecting AP status and application experience parameters
QoS features Priority mapping and scheduling that are compliant with Wi-Fi multimedia (WMM) to implement priority-based data processing and forwarding
WMM parameter management for each radio
WMM power saving
Priority mapping for uplink packets; flow-based mapping for downlink packets
Queue mapping and scheduling
User-based bandwidth limiting
Airtime scheduling
Air interface HQoS scheduling
Security features Open system authentication
WEP authentication/encryption using a 64-bit, 128-bit, 152-bit or 192-bit encryption key
WPA2-PSK authentication and encryption (WPA2-Personal)
WPA2-802.1X authentication and encryption (WPA2-Enterprise)
WPA3-SAE authentication and encryption (WPA3-Personal)
WPA3-802.1X authentication and encryption (WPA3-Enterprise)
WPA-WPA2 hybrid authentication
WPA2-WPA3 hybrid authentication
802.1X authentication, MAC address authentication, Portal authentication, etc.
DHCP snooping
Dynamic ARP inspection (DAI)
IP Source Guard (IPSG)
Maintenance features Unified management and maintenance on the cloud management platform
Automatic login, automatic configuration loading, and plug-and-play (PnP)
Batch upgrade
Telnet
STelnet using SSHv2
SFTP using SSHv2
Remote wireless O&M through Bluetooth console ports
Web-based NMS, and login through HTTP or HTTPS
Real-time configuration monitoring and fast fault locating using the NMS
System status alarm
NTP